Skip to main content
Log in

An improved method for the collagen gel contraction assay

  • Cell and Tissue Models
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Summary

The collagen gel contraction (CGC) assay is used frequently to study the cell-mediated reorganization of the extracellular matrix. In a typical CGC assay, cells embedded in a disk-shaped lattice (gel) of native type I collagen fibers compress the fibers and, consequently, reduce the diameter of the collagen disk within h or d. The degree to which the collagen is contracted is usually quantified by measurement of the diameter or the area of the disk. During CGC assays, friction or adhesion (or both) between gels and their culture containers can cause gels to be incompletely contracted or to acquire distorted shapes. Such occurrences degrade the reproducibility and reliability of measurements of gel dimensions. To address these problems, we developed an oil-supported collagen retraction (OSCR) assay that creates an environment of low friction and adhesion around the contracting collagen gel. The OSCR assay is accomplished with simple equipment and is easily performed, sensitive, and consistently yields fully contracted gels with minimal distortion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bell, E.; Ivarsson, B.; Merrill, C. Production of a tissue-like structure by contraction of collagen lattices by human fibroblasts of different proliferative potential in vitro. Proc. Natl. Acad. Sci. USA 76:1274–1278; 1979.

    Article  PubMed  CAS  Google Scholar 

  • Bittner, K.; Liszio, C.; Blumberg, P.; Schönherr, E.; Kresse, H. Modulation of collagen gel contraction by decorin. Biochem. J. 314:159–166; 1996.

    PubMed  CAS  Google Scholar 

  • Burgess, M. L.; Carver, W. E.; Terracio, L.; Wilson, S. P.; Wilson, M. A.; Borg, T. K. Integrin-mediated collagen gel contraction by cardiac fibroblasts. Effects of angiotensin II. Circ. Res. 74:291–298; 1994.

    PubMed  CAS  Google Scholar 

  • Carver, W.; Molano, I.; Reaves, T. A.; Borg, T. K.; Terracio, L. Role of the α1β1 integrin complex in collagen gel contraction in vitro by fibroblasts. J. Cell. Physiol. 165:425–437; 1995.

    Article  PubMed  CAS  Google Scholar 

  • Clark, R. A. F.; Folkvord, J. M.; Hart, C. E.; Murray, M. J.; McPherson, J. M. Platelet isoforms of platelet-derived growth factor stimulate fibroblasts to contract collagen matrices. J. Clin. Invest. 84:1036–1040; 1989.

    Article  PubMed  CAS  Google Scholar 

  • Cooke, M. F.; Sakai, T.; Mosher, D. F. Contraction of collagen matrices mediated by alpha2beta1A and alpha(v)beta3 integrins. J. Cell Sci. 113:2375–2383; 2000.

    PubMed  CAS  Google Scholar 

  • Davis, G. E.; Camarillo, C. W. Regulation of endothelial cell morphogenesis by integrins, mechanical forces and matrix guidance pathways. Exp. Cell Res. 216:113–123; 1995.

    Article  PubMed  CAS  Google Scholar 

  • Davis, G. E.; Pintar Allen, K. A.; Salazar, R.; Maxwell, S. A. Matrix metalloproteinase-1 and-9 activation by plasmin regulates a novel endothelial cell-mediated mechanism of collagen gel contraction and capillary tube regression in three-dimensional collagen matrices. J. Cell Sci. 114:917–930; 2001.

    PubMed  CAS  Google Scholar 

  • Deryugina, E. I.; Bourdon, M. A.; Reisfeld, R. A.; Strongin, A. Remodeling of collagen matrix by human tumor cells requires activation and cell surface association of matrix metalloproteinase-2. Cancer Res. 58:3743–3750; 1998.

    PubMed  CAS  Google Scholar 

  • Guidry, C.; Hook, M. Endothelins produced by endothelial cells promote collagen gel contraction by fibroblasts. J. Cell Biol. 115:873–880; 1991.

    Article  PubMed  CAS  Google Scholar 

  • Gullberg, D.; Tingström, A.; Thuresson, A.-C.; Olsson, L.; Terracio, L.; Borg, T. K.; Rubin, K. β1 integrin-mediated collagen gel contraction is stimulated by PDGF. Exp. Cell Res. 186:264–272; 1990.

    Article  PubMed  CAS  Google Scholar 

  • Harris, A. K.; Stopak, D.; Wild, P. Fibroblast traction as a mechanism for collagen morphogenesis. Nature 290:249–251; 1981.

    Article  PubMed  CAS  Google Scholar 

  • Kanekar, S.; Borg, T. K.; Terracio, L.; Carver, W. Modulation of heart fibroblast migration and collagen gel contraction by IGF-I. Cell Adhes. Commun. 7:513–523; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Kitamura, M.; Maruyama, N.; Yoshida, H.; Nagasawa, R.; Mitarai, T.; Sakai, O. Extracellular matrix contraction by cultured mesangial cells: an assay system for mesangial cell-matrix interaction. Exp. Mol. Pathol. 54:181–200; 1991.

    Article  PubMed  CAS  Google Scholar 

  • Klein, C. E.; Dressel, D.; Steinmayer, T.; Mauch, C.; Eckes, B.; Krieg, T.; Bankert, R. B.; Weber, L. Integrin α2β1 is upregulated in fibroblasts and highly aggressive melanoma cells in three-dimensional collagen lattices and mediates the reorganization of collagen I fibrils. J. Cell Biol. 115:1427–1436; 1991.

    Article  PubMed  CAS  Google Scholar 

  • Montesano, R.; Orci, L. Transforming growth factor β stimulates collagen-matrix contraction by fibroblasts: implications for wound healing. Proc. Natl. Acad. Sci. USA 85:4894–4897; 1988.

    Article  PubMed  CAS  Google Scholar 

  • Reed, M. J.; Vernon, R. B.; Abrass, I. B.; Sage, E. H. TGF-β1 induces the expression of type I collagen and SPARC, and enhances contraction of collagen gels, by fibroblasts from young and aged donors. J. Cell. Physiol. 158:169–179; 1994.

    Article  PubMed  CAS  Google Scholar 

  • Smith-Thomas, L. C.; Richardson, P. S.; Rennie, I. G.; Palmer, I.; Boulton, M.; Sheridan, C.; MacNeil, S. Influence of pigment content, intracellular calcium and cyclic AMP on the ability of human retinal pigment epithelial cells to contract collagen gels. Curr. Eye Res. 21:518–529; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Travis, J. A.; Hughes, M. G.; Wong, J. M.; Wagner, W. D.; Geary, R. L. Hyaluronan enhances contraction of collagen by smooth muscle cells and adventitial fibroblasts: role of CD44 and implications for constritive remodeling. Circ. Res. 88:2–4; 2001.

    Google Scholar 

  • Vernon, R. B.; Angello, J. C.; Iruela-Arispe, M. L.; Lane, T. F.; Sage, E. H. Reorganization of basement membrane matrices by cellular traction promotes the formation of cellular networks in vitro. Lab. Invest. 66:536–547; 1992.

    PubMed  CAS  Google Scholar 

  • Vernon, R. B.; Lara, S. L.; Drake, C. J.; Iruela-Arispe, M. L.; Angello, J. C.; Little, C. D.; Wight, T. N.; Sage, E. H. Organized type I collagen infleunces endothelial patterns during “spontaneous angiogenesis in vitro”: planar cultures as models of vascular development. In Vitro Cell. Dev. Biol. 31:120–131; 1995.

    CAS  Google Scholar 

  • Vernon, R. B.; Sage, E. H. Contraction of fibrillar type I collagen by endothelial cells: a study in vitro. J. Cell. Biochem. 60:185–197; 1996.

    Article  PubMed  CAS  Google Scholar 

  • Wen, F. Q.; Skold, C. M.; Liu, X. D.; Ertl, R. F.; Zhu, Y. K.; Kohyama, T.; Wang, H.; Rennard, S. I. Glucocorticoids and TGF-beta 1 synergize in augmenting fibroblast mediated contraction of collagen gels. Inflammation 25:109–117; 2001.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert B. Vernon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vernon, R.B., Gooden, M.D. An improved method for the collagen gel contraction assay. In Vitro Cell.Dev.Biol.-Animal 38, 97–101 (2002). https://doi.org/10.1290/1071-2690(2002)038<0097:AIMFTC>2.0.CO;2

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1290/1071-2690(2002)038<0097:AIMFTC>2.0.CO;2

Key words

Navigation